Boosted Classification Trees and Class Probability/Quantile Estimation

نویسندگان

  • David Mease
  • Abraham J. Wyner
  • Andreas Buja
چکیده

The standard by which binary classifiers are usually judged, misclassification error, assumes equal costs of misclassifying the two classes or, equivalently, classifying at the 1/2 quantile of the conditional class probability function P[y = 1|x]. Boosted classification trees are known to perform quite well for such problems. In this article we consider the use of standard, off-the-shelf boosting for two more general problems: 1) classification with unequal costs or, equivalently, classification at quantiles other than 1/2, and 2) estimation of the conditional class probability function P[y = 1|x]. We first examine whether the latter problem, estimation of P[y = 1|x], can be solved with LogitBoost, and with AdaBoost when combined with a natural link function. The answer is negative: both approaches are often ineffective because they overfit P[y = 1|x] even though they perform well as classifiers. A major negative point of the present article is the disconnect between class probability estimation and classification. Next we consider the practice of over/under-sampling of the two classes. We present an algorithm that uses AdaBoost in conjunction with Over/Under-Sampling and Jittering of the data (“JOUS-Boost”). This algorithm is simple, yet successful, and it preserves the advantage of relative protection against overfitting, but for arbitrary misclassification costs and, equivalently, arbitrary quantile boundaries. We then use collections of classifiers obtained from a grid of quantiles to form estimators of class probabilities. The estimates of the class probabilities compare favorably to those obtained by a variety of methods across both simulated and real data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Probability Estimation Techniques for Rule Learning

Rule learning is known for its descriptive and therefore comprehensible classification models which also yield good class predictions. However, in some application areas, we also need good class probability estimates. For different classification models, such as decision trees, a variety of techniques for obtaining good probability estimates have been proposed and evaluated. However, so far, th...

متن کامل

An Inverse-Quantile Function Approach for Modeling Electricity Price

We propose a class of alternative stochastic volatility models for electricity prices using the quantile function modeling approach. Specifically, we fit marginal distributions of power prices to two special classes of distributions by matching the quantile of an empirical distribution to that of a theoretical distribution. The distributions from the first class have closed-form formulas for pr...

متن کامل

Improved Class Probability Estimates from Decision Tree Models

Decision tree models typically give good classification decisions but poor probability estimates. In many applications, it is important to have good probability estimates as well. This paper introduces a new algorithm, Bagged Lazy Option Trees (B-LOTs), for constructing decision trees and compares it to an alternative, Bagged Probability Estimation Trees (B-PETs). The quality of the class proba...

متن کامل

High Quantile Estimation and the Port Methodology

• In many areas of application, a typical requirement is to estimate a high quantile χ1−p of probability 1−p, a value, high enough, so that the chance of an exceedance of that value is equal to p, small. The semi-parametric estimation of high quantiles depends not only on the estimation of the tail index γ, the primary parameter of extreme events, but also on an adequate estimation of a scale f...

متن کامل

An efficient model-free estimation of multiclass conditional probability

Conventional multiclass conditional probability estimation methods, such as Fisher’s discriminate analysis and logistic regression, often require restrictive distributional model assumption. In this paper, a model-free estimation method is proposed to estimate multiclass conditional probability through a series of conditional quantile regression functions. Specifically, the conditional class pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2007